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SUMMARY

A new line-search algorithm for cell-vertex unstructured triangular grids is proposed in this paper and
combined with an implicit residual smoothing procedure, to accelerate convergence of a recently devel-
oped upwind �nite-volume method for the Euler and the Navier–Stokes equations. Both the standard
implementation with two smoothing lines and a new procedure using four directions are considered and
fully tested to evaluate their e�ciency and to determine the optimal smoothing parameters. Copyright
? 2005 John Wiley & Sons, Ltd.

KEY WORDS: unstructured; line-search; residual smoothing

1. INTRODUCTION

Engineering applications often require the analysis of complex geometries, which can be easily
discretized by means of unstructured meshes. Most methods for unstructured grids proposed
to date employ a cell-vertex discretization, since it allows a natural de�nition of the cell-
based �ow gradients, which are required both for the higher-order reconstruction and for the
discretization of the viscous terms. In the framework of a �nite-volume approach, the authors
have recently developed and validated a new higher-order accurate 2D and 3D gradient-based
reconstruction to discretize the convective terms of the Navier–Stokes equations [1–3]. The
reconstruction employs the same (cell-based) gradients needed for the discretization of the
di�usive terms, with no additional averaging.
The natural further step is to implement a suitable technique that accelerates convergence

to steady-state. One of the most successful techniques in use is the so-called implicit residual
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smoothing (IRS), �rst introduced by Lerat [4] for the Lax–Wendro� scheme, and later ex-
tended by Jameson [5] to Runge–Kutta schemes. This technique enlarges the stability range
of the basic time-stepping scheme allowing higher CFL numbers to be used. The technique is
easily applied on structured grids, where the smoothing directions coincide with the grid-lines.
However, its application on unstructured grids is not straightforward, since proper smoothing
lines must be found. This paper proposes a new line-search (LS) algorithm for cell-vertex
2D unstructured triangular grids, which can be easily extended to three dimensions, and is
characterized by another important feature: owing to the arbitrary choice of the LS direc-
tion, the smoothing procedure can be applied on more than two lines, thus resulting in a
further convergence and robustness improvement. The paper will also present the results of
an exhaustive numerical study on well-known inviscid and laminar test cases, to validate both
the LS algorithm and the multi-direction smoothing, as well as to demonstrate the very high
e�ciency and robustness both for single-grid and multi-grid computations.

2. SPACE DISCRETIZATION

An unstructured cell-vertex triangular grid is used to discretize the 2D Euler and Navier–Stokes
equations employed in this paper. A left state and a right state, QL(ij) and Q

R
(ij), are reconstructed

on the two sides of each interface (ij), obtained by connecting either the barycentres or the
circumcentres of two neighbouring triangles. For the left state, one has

QL(ij) =Qj + (∇Q)ji · lji (1)

lji being the vector pointing from the node j to the mid-point of the side; see Figure 1. Standard
one-dimensional limiters can also be applied straightforwardly. It can be easily shown that
in one dimension the reconstruction of the left state is based on the gradient of Q in the
left-neighbouring cell. Similarly, in two and three dimensions, a unique left-neighbouring cell
can be de�ned as the cell Cji, which contains the prolongation of the side (ji), plotted as
a dot–dashed line in Figure 1. The cell Cji is searched only once and can be stored as
a pointer (except in the case of moving grids). The choice of a cell-vertex triangular grid
allows to compute the cell-based gradient (∇Q)ji ≡ (∇Q)Cji uniquely. All gradients must
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Figure 1. Higher-order reconstruction.
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be computed once at each iteration, stored, and then used without any additional averag-
ing. For this reason, and since the same gradients must be computed anyway when solving
the Navier–Stokes equations, the authors claim that the proposed higher-order reconstruction
minimizes the computational time required for the evaluation of the �ow gradients [1–3].
The �ux-di�erence-splitting of Roe [6] is then used to solve the Riemann problem de�ned
at each interface. A standard �nite-element Galerkin discretization is used for the viscous
terms.

3. LINE-SEARCH ALGORITHM

Starting from a generic node (stored as ‘=1 in the line), a smoothing line as close as possible
to a generic direction e is recursively obtained as follows: consider all edges s containing the
node ‘ and compute the scalar product (s · e), s being the versor of s pointing from ‘ to
its second node. The edge with maximum scalar product is chosen as connecting line: thus,
the second node of that edge is stored as the node (‘ + 1) of the line. Figure 2 illustrates
this process for the particular case e≡ i: three choices are possible, since backward-pointing
edges can be a priori discarded. The scalar product is maximum for the edge s2 which will
be chosen as part of the smoothing line. This criterion allows to choose the edge aligned
as much as possible with the chosen smoothing direction e. The procedure is then applied
to the subsequent node, so as to select a new edge of the connecting line. The search stops
either when the boundary is reached or when all possible subsequent nodes already belong to
pre-existent lines. When one of these events occurs, a new line can be started from the �rst
free node of the grid. The process stops when all nodes of the grid belong to a line. Figure 2
also provides an example of the resulting line-pattern in the direction e≡ i.
It may happen that the node selected as the subsequent one is the �rst node of an ex-

isting line. In such a case, the algorithm allows to join the forming line to the previous
one, thus generating a unique longer line. This allows one to chose the starting nodes
randomly.
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Figure 2. Line search in the x-direction.
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At the end of the procedure, every node must belong to one line only. Lines can have
any length, but one- and two-node lines are not allowed. If such lines are present, they are
inserted in a longer line. A simple way to perform this junction is to cut a longer line and
let the short line to be joined. The �nal pattern of lines will be only slightly deformed with
no in�uence on the IRS technique.

4. RESIDUAL SMOOTHING AND MULTIGRID

The discretized governing equations are solved by means of a four-stage Runge–Kutta scheme:
at each stage, the explicit residual Re is modi�ed as [4, 5]

Ri=Re + �̂∇2Ri (2)

where Ri is the smoothed residual and �̂ is a suitable positive variable used to control the
smoothing. To reduce the computational e�ort, Equation (2) is factorized and applied in Ns
steps along the Ns smoothing directions ek :

R(0)=Re

(1− �(∇�)ek )R(k)=R(k−1); k=1; : : : ; Ns

Ri=R(Ns)

(3)

using a value of � independent of ek , for simplicity. In Equation 3, (∇�)ek is the standard
second di�erence operator applied on each line corresponding to e= ek . The standard appli-
cation of the IRS procedure considers two smoothing directions aligned with the (structured)
grid lines, and thus almost orthogonal. However, owing to the generality of the LS algorithm
and due to the non-existence of a preferential direction on unstructured triangular grids, more
than two smoothing directions can be usefully employed. Numerical experiments show that
Ns = 4 (with 45◦ between each direction) is su�cient to obtain an e�ective multi-directional
smoothing and thus can be considered as the optimal choice.
A standard V-cycle full multigrid (FMG) [7] has been also implemented to accelerate

convergence to steady state. Finer grids are created during the nested iteration by means of a
global uniform re�nement, improved by a grid-point adjustment.

5. RESULTS

Four well-known inviscid and laminar test-cases have been considered to validate the LS al-
gorithm and the multi-direction IRS, as well as to suggest the optimal smoothing constants
for each �ow regime (inviscid=laminar, subsonic=transonic): (i) the inviscid subsonic �ow
in a 20% striction channel with outlet isoentropic Mach number M2; is = 0:5; (ii) the sub-
sonic (M∞=0:5) and (iii) the transonic (M∞=0:8) inviscid �ows past a NACA-0012 airfoil
with incidence angle �=1◦; (iv) the laminar �ow past the same airfoil with incidence an-
gle �=10◦, M∞=0:8 and Re=500. Figures 3 and 4 provide the Mach number contours
(�M =0:05) for the channel �ow and for the inviscid transonic �ow past the airfoil, respec-
tively. Very �ne grids (about 14 000 cells) have been employed in all applications to better
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Figure 3. Channel �ow.

Figure 4. Inv. transonic airfoil.
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Figure 5. Channel �ow: 4-line smoothing.

test both the LS and the IRS strategies, the accuracy of the space discretization already having
been demonstrated in References [1–3].
Using di�erent values of � and CFL number, an exhaustive application of the code to the

single-grid solution of the channel �ow problem has been performed, both to �nd out the
optimal parameters and to compare the e�ciency of the standard 2-line smoothing with that
obtained with the present 4-line strategy. For each test-case, one work unit is the time required
by the best run. As shown in Figure 5, the 4-line smoothing provides very fast convergence
(work≈ 1) for a wide range of �, using the maximum stable CFL number. Figure 5 also
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Figure 6. Channel �ow: 2-line smoothing.
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Figure 7. Subsonic airfoil: 4-line smoothing.

shows that a slight reduction of the CFL number improves the robustness, without a�ecting
the e�ciency signi�cantly. When using only two smoothing lines, higher values of � must
be used, as expected; more importantly, the minimum CPU time is twice that required by
the optimal 4-line runs (Figure 6). Similar results are obtained when comparing the best
performances of the 2- and 4-line smoothings in the other three �ow cases, and thus are
not shown, for brevity. Figures 7–9 provide the results of an exhaustive application of the
code to the single-grid solution of the three �ows past the airfoil, using the 4-line smoothing
only: the subsonic case behaves as the channel �ow, with a very fast convergence for a wide
range of �, using the maximum stable CFL numbers (which are lower). A di�erent behaviour
appears in the transonic and in the laminar �ow cases, where high local values of the �ow
residual are created while converging to steady state, namely, when the shocks begin to be
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Figure 8. Transonic airfoil: 4-line smoothing.
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Figure 9. Laminar airfoil: 4-line smoothing.

sharpened or the recirculation region begins to be better de�ned: in such cases, an excessive
smoothing leads to lower convergence rates, even allowing higher values of maximum stable
CFL number.
Di�erent optimal values of � and CFL number have been found in the four test-cases

analysed. However, a more careful examination of Figures 5, 7–9 shows that it is possible to
choose constant values of � and CFL number (�≈ 0:6 and CFL≈ 6:5), which are not optimal,
but give fully satisfactory convergence rates in all test-cases considered.
The solution of the inviscid transonic �ow past the NACA-0012 airfoil has been ap-

proached also using a standard MG strategy, which produces a further reduction of the CPU
time by a factor of 4.5, as shown in Figure 10, which provides the convergence histories
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Figure 10. Transonic airfoil: convergence histories.

of two single-grid (without and with the optimal 4-line IRS) and of the optimal multigrid
calculations.

6. CONCLUSIONS

A new line-search (LS) algorithm for cell-vertex unstructured triangular grids has been pre-
sented. Its combination with an IRS procedure has been widely tested versus inviscid and
laminar �ows through ducts and past airfoils. The proposed numerical results allow one to
choose the optimal smoothing parameters and demonstrate that (i) the LS algorithm is cheap
and robust and produces very good line patterns, which allow an e�cient application of the
standard IRS technique; (ii) for single-grid computations, a further signi�cant improvement
is obtained by using four smoothing directions, rather than the usual two; (iii) a very high
e�ciency of the 4-line IRS has been demonstrated also for multi-grid computations.
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